A unifying modeling framework for highly multivariate disease mapping.
نویسندگان
چکیده
Multivariate disease mapping refers to the joint mapping of multiple diseases from regionally aggregated data and continues to be the subject of considerable attention for biostatisticians and spatial epidemiologists. The key issue is to map multiple diseases accounting for any correlations among themselves. Recently, Martinez-Beneito (2013) provided a unifying framework for multivariate disease mapping. While attractive in that it colligates a variety of existing statistical models for mapping multiple diseases, this and other existing approaches are computationally burdensome and preclude the multivariate analysis of moderate to large numbers of diseases. Here, we propose an alternative reformulation that accrues substantial computational benefits enabling the joint mapping of tens of diseases. Furthermore, the approach subsumes almost all existing classes of multivariate disease mapping models and offers substantial insight into the properties of statistical disease mapping models.
منابع مشابه
Predictive Risk Mapping of Leptospirosis for North of Iran Using Pseudo-absences Data
Leptospirosis is a common zoonosis disease with a high prevalence in the world and is recognized as an important public health drawback in both developing and developed countries owing to epidemics and increasing prevalence. Because of the high diversity of hosts that are capable of carrying the causative agent, this disease has an expansive geographical reach. Various environmental and social ...
متن کاملAn efficient PCA-based color transfer method
Color information of natural images can be considered as a highly correlated vector space. Many different color spaces have been proposed in the literature with different motivations toward modeling and analysis of this stochastic field. Recently, color transfer among different images has been under investigation. Color transferring consists of two major categories: colorizing grayscale images ...
متن کاملBivariate Conway-Maxwell-Poisson distribution: Formulation, properties, and inference
The bivariate Poisson distribution is a popular distribution for modeling bivariate count data. Its basic assumptions and marginal equi-dispersion, however, may prove limiting in some contexts. To allow for data dispersion, we develop here a bivariate Conway–Maxwell–Poisson (COM–Poisson) distribution that includes the bivariate Poisson, bivariate Bernoulli, and bivariate geometric distributions...
متن کاملMapping Informative Clusters in a Hierarchial Framework of fMRI Multivariate Analysis
Pattern recognition methods have become increasingly popular in fMRI data analysis, which are powerful in discriminating between multi-voxel patterns of brain activities associated with different mental states. However, when they are used in functional brain mapping, the location of discriminative voxels varies significantly, raising difficulties in interpreting the locus of the effect. Here we...
متن کاملA Unifying Framework for Iteration Reordering Transformations
We present a framework for unifying iteration reordering transformations such as loop interchange, loop distribution, skewing, tiling, index set splitting and statement reordering. The framework is based on the idea that a transformation can be represented as a mapping from the original iteration space to a new iteration space. The framework is designed to provide a uniform way to represent and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics in medicine
دوره 34 9 شماره
صفحات -
تاریخ انتشار 2015